

Welcome to django-private-chat’s documentation!

Contents:

	:sunglasses: django-private-chat :sunglasses:
	Important Notes

	Documentation

	Example project

	Customize the templates

	Exsiting project quickstart

	Running Tests

	Credits

	Installation

	Usage

	Messages

	Settings

	Admin

	Starting the server

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	0.3.0 (2020-05-03)

	0.2.2 (2018-12-12)

	0.2.1 (2018-12-07)

	0.2.0 (2018-10-22)

	0.1.9 (2018-07-16)

	0.1.8 (2018-03-23)

	0.1.7 (2018-03-20)

	0.1.6 (2017-04-11)

	0.1.5 (2017-03-11)

	0.1.4 (2017-02-12)

	0.1.3 (2017-02-11)

	0.1.2 (2017-02-11)

	0.1.1 (2017-02-10)

	0.1.0 (2017-02-10)

:sunglasses: django-private-chat :sunglasses:

[image: _images/django-private-chat.svg]
 [https://badge.fury.io/py/django-private-chat][image: _images/django-private-chat1.svg]
 [https://travis-ci.org/Bearle/django-private-chat][image: _images/badge.svg]
 [https://codecov.io/gh/Bearle/django-private-chat]Please also check out our another package https://github.com/Bearle/django_mail_admin

Django one-to-one Websocket-based Asyncio-handled chat, developed by Bearle team

[image: _images/screen_1.jpg]

Important Notes

This app uses separate management command, run_chat_server for running Websockets in Django context. It is intended to be used with something like Supervisor or Systemd to run asyncio webserver as a separate one from Django.
We didn’t want our app to be limited to be used together with Django Channels - that’s why we did it that way.

You can find an example Systemd config to run it as a service at https://github.com/Bearle/django-private-chat/blob/dev/example.service

P.S. Don’t forget to change CHAT_WS_SERVER_HOST && CHAT_WS_SERVER_PORT && CHAT_WS_SERVER_PROTOCOL settings!

Documentation

The full documentation is (finally) at https://django-private-chat.readthedocs.io . You can also check the docstrings & this readme.

Example project

You can check out our example project by cloning the repo and heading into example/ directory.
There is a README file for you to check, initial data to check out the chat included.

Customize the templates

How to customize the template?
Just copy:

venv/lib/pythonX.X/site-packages/django_private_chat/templates/django_private_chat/dialogs.html
to
yourapp/templates/django_private_chat/dialogs.html

And feel free to edit it as you like!
We intentionally left the JS code inside for it to be editable easily.

Exsiting project quickstart

Install django-private-chat:

pip install django-private-chat

Migrate:

python manage.py migrate django-private-chat

Note: you can use this package with or without uvloop, just run either

python manage.py run_chat_server

or run

python manage.py run_chat_server_uvloop

Add it to your INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'django_private_chat',
 ...
)

Add the server & port for your asyncio server to settings:

CHAT_WS_SERVER_HOST = 'localhost'
CHAT_WS_SERVER_PORT = 5002
CHAT_WS_SERVER_PROTOCOL = 'ws'

It is possible to change messages datetime format using

DATETIME_FORMAT

Add django-private-chat’s URL patterns:

from django_private_chat import urls as django_private_chat_urls

urlpatterns = [
 ...
 url(r'^', include('django_private_chat.urls')),
 ...
]

Add

{% block extra_js %}{% endblock extra_js %}

to your base template

Now you can start a dialog using

/dialogs/some_existing_username

To create a WSS (TLS) server instead:

python manage.py run_chat_server "path/to/cert.pem"

(also works with uvloop).
The “cert.pem” file should be a plaintext PEM file containing first a private key, then a certificate (may be a concatenation of a .key and a .crt file).
Please note that wss will use TLSv1 by default for python 3.5 & 3.4 and will use ssl.PROTOCOL_TLS_SERVER for 3.6 and above.
Features
——–

-:white_check_mark: Uses current app model (get_user_model() and settings.AUTH_USER_MODEL)

-:white_check_mark: Translatable (uses ugettext and {% trans %})

-:white_check_mark: One-to-one user chat

-:white_check_mark: Works using WebSockets

-:white_check_mark: Works (optionally) using WSS (TLS) connections (disclaimer - security not guaranteed)

-:white_check_mark: Displays online/offline status

-:white_check_mark: Display typing/not typing status

-:white_check_mark: Soft deletable message model - be sure to keep messages to comply with message-keeping laws

-:white_check_mark: Flash the dialog button when the user you are not currently talking to wrote you a message

-:point_right: TODO: add a dialog to the list when new one started

-:point_right: TODO: add user-not-found and other alerts

-:point_right: possible Redis backend intergration

Running Tests

Does the code actually work?

source <YOURVIRTUALENV>/bin/activate
(myenv) $ pip install tox
(myenv) $ tox

Credits

Tools used in rendering this package:

	Cookiecutter [https://github.com/audreyr/cookiecutter]

	cookiecutter-djangopackage [https://github.com/pydanny/cookiecutter-djangopackage]

Installation

At the command line:

$ pip install django-private-chat

Usage

To use django-private-chat in a project, add it to your INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'django_private_chat',
 ...
)

Add the server & port for your asyncio server to settings:

CHAT_WS_SERVER_HOST = 'localhost'
CHAT_WS_SERVER_PORT = 5002
CHAT_WS_SERVER_PROTOCOL = 'ws'

Add django-private-chat’s URL patterns:

from django_private_chat import urls as django_private_chat_urls

urlpatterns = [
 ...
 url(r'^', include(django_private_chat_urls)),
 ...
]

or

urlpatterns = [
 ...
 path('', include(django_private_chat.urls)),
 ...
]

Add

{% block css %}{% endblock css %}
{% block content %}{% endblock content %}
{% block extra_js %}{% endblock extra_js %}

to your base template

Migrate:

python manage.py migrate django_private_chat

Now start the chat server:

python manage.py run_chat_server

Messages

Application provides the following message channels:

'new-message',
'new-user',
'online',
'offline',
'check-online',
'is-typing',
'read_message'

which are pretty self-explanatory.

Here is detailed explanation of what each channel does and data types:

	new-message
	Example from js:

{
 type: 'new-message',
 session_key: '{{ request.session.session_key }}',
 username: opponent_username,
 message: message
}

In the handler, a new Message object is created and the received packet
along with the additional parameters is sene to the other user’s websocket (if present)

packet['created'] = msg.get_formatted_create_datetime()
packet['sender_name'] = msg.sender.username
packet['message_id'] = msg.id

	new-user
	Sends connected client list of currently active users.

Get list list of current active users
users = [
 {'username': username, 'uuid': uuid_str}
 for username, uuid_str in ws_connections.values()
]

Make packet with list of new users (sorted by username)
packet = {
 'type': 'users-changed',
 'value': sorted(users, key=lambda i: i['username'])
}

	online
	Informs the users when someone of other has gone online.

{‘type’: ‘gone-online’, ‘usernames’: [user_owner.username]}

	offline
	Distributes the users ‘gone offline’ status to everyone he has dialog with
{‘type’: ‘gone-offline’, ‘username’: user_owner.username}

	check-online
	Same as online, except that it is used to provide the user that
has gone online with information about who of his dialogs’ users is online.

	is-typing
	Shows message to opponent if the user is typing a message

{‘type’: ‘opponent-typing’, ‘username’: user_opponent}

	read_message
	Send message to user if the opponent has read the message
Also sets the message.read to True.

{‘type’: ‘opponent-read-message’, ‘username’: user_opponent, ‘message_id’: message_id}

Settings

You should specify settings in your settings.py like this:

CHAT_WS_SERVER_HOST = 'localhost'
CHAT_WS_SERVER_PORT = 5002
CHAT_WS_SERVER_PROTOCOL = 'ws'
DATETIME_FORMAT = "d.m.Y H:i:s"

Here’s a list of available settings:

CHAT_WS_SERVER_PROTOCOL - 'ws' or 'wss'
CHAT_WS_SERVER_HOST - 'localhost' or ip or domain
CHAT_WS_SERVER_PORT - websocket application port
DATETIME_FORMAT - "d.m.Y H:i:s" - format for datetimes

Admin

Application provides django admin intergration for Dialog and Message models.

In order to provide custom admin representation, first you have to unregister existing:

from django_private_chat.models import Dialog, Message
admin.site.unregister(Dialog)
admin.site.unregister(Message)

// your example admin
class DialogAdmin(admin.ModelAdmin):
 list_display = ('id',)
admin.site.register(Dialog, DialogAdmin)

Starting the server

Application provides two managements commands, run_chat_server and run_chat_server_uvloop.

That means that asyncio server is started SEPARATELY from the main Django application.
You can also supply optional “path/to/cert.pem” to the command to use wss.

What management command do is they simply get the asyncio/uvloop event loop,
add handlers for different message types to it and run the loop forever.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/Bearle/django-private-chat/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

django-private-chat could always use more documentation, whether as part of the
official django-private-chat docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/Bearle/django-private-chat/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django-private-chat for local development.

	Fork the django-private-chat repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/django-private-chat.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv django-private-chat
$ cd django-private-chat/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 django_private_chat tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

Tips

To run a subset of tests:

$ python -m unittest tests.test_django_private_chat

Credits

Development Lead

	delneg <tech@bearle.ru>

	guitarmustafa <oleg5432101@rambler.ru>

Contributors

None yet. Why not be the first?

 History

0.3.0 (2020-05-03)

	Update deps, example to Django 2.2.12

	Move to async/await syntax

0.2.2 (2018-12-12)

	Fix read_message_handler by idonoso

0.2.1 (2018-12-07)

	Compatibility with python3.7 by Emeka Icha

0.2.0 (2018-10-22)

	Added WSS fix for python 3.4 & 3.5

0.1.9 (2018-07-16)

	Added WSS support by @zsmith3

0.1.8 (2018-03-23)

	Fixed time in Message model to be timezone-aware

0.1.7 (2018-03-20)

	Additions for django 2.0

0.1.6 (2017-04-11)

	Fixed bugs with static files and added comment about extra_js block to readme

0.1.5 (2017-03-11)

	Added flashing other user button when he sent you a message and you’re in another dialog

0.1.4 (2017-02-12)

	Added support for django 1.8,1.9

0.1.3 (2017-02-11)

	Removed uvloop from requirements

0.1.2 (2017-02-11)

	Fixed i18n not loaded in dialogs template bug

0.1.1 (2017-02-10)

	Added migrations.

0.1.0 (2017-02-10)

	First release on PyPI.

Index

 _static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to django-private-chat’s documentation!

 		
 :sunglasses: django-private-chat :sunglasses:

 		
 Important Notes

 		
 Documentation

 		
 Example project

 		
 Customize the templates

 		
 Exsiting project quickstart

 		
 Running Tests

 		
 Credits

 		
 Installation

 		
 Usage

 		
 Messages

 		
 Settings

 		
 Admin

 		
 Starting the server

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 0.3.0 (2020-05-03)

 		
 0.2.2 (2018-12-12)

 		
 0.2.1 (2018-12-07)

 		
 0.2.0 (2018-10-22)

 		
 0.1.9 (2018-07-16)

 		
 0.1.8 (2018-03-23)

 		
 0.1.7 (2018-03-20)

 		
 0.1.6 (2017-04-11)

 		
 0.1.5 (2017-03-11)

 		
 0.1.4 (2017-02-12)

 		
 0.1.3 (2017-02-11)

 		
 0.1.2 (2017-02-11)

 		
 0.1.1 (2017-02-10)

 		
 0.1.0 (2017-02-10)

_images/screen_1.jpg
user_1 user_1 is typing... delneg
Online Online
delneg: hey - 11.02.2017 11:24:51 delneg: hey - 11.02.2017 11:24:51
delneg: how are ou? - 11.02.2017 11:25:14 delneg: how are ou? - 11.02.2017 11:25:14
user_1: I'm fine, thanks! - 11.02.2017 11:27:39 user 1: I'm fine, thanks! — 1102 2017 112750

Write a message Can you see me typing|

_static/file.png

_static/minus.png

